国土名片】大食物观|茶天然产物缓解痤疮的作用机制研究进展

2024-10-19 01:20 《茶叶科学》杂志  主页 > 趣旨 > 我的国土 > 大食物观 >

打印 放大 缩小







茶天然产物缓解痤疮的作用机制研究进展

 
茶叶科学》杂志 2024年1期 

 

作者:吴致远 王凯博 陈思霖 赵碧 申时全

收稿日期:2023-09-12             修订日期:2023-11-29
 

基金项目:云南省重大科技专项计划(202102AE090038)、云南省基础研究计划项目(202301AU070129)、云南省茶学重点实验室开放基金(2023YNCX010、2022YNCX004)、云南省农业科学院应用基础预研专项(2023KYZX-03)

作者简介:吴致远,男,研究实习员,主要从事茶营养与健康研究,yuan.yaas@icloud.com。*通信作者:shensq75@163.com

摘要:茶因其明确的保健功能与健康益处备受人们青睐。随着对茶活性成分的深入研究,茶天然产物已被证实能够对多种疾病模型具有改善效果。痤疮是一种流行性高、复发率高的炎性皮肤病,除传统临床诊疗外,以敷贴、皮肤护理、膳食改善为代表的补充替代治疗也受到欢迎。目前市场上,越来越多的祛痘功效宣称产品在原料中添加茶源活性成分,以茶多酚、咖啡碱、茶氨酸、茶皂素为代表的茶叶天然产物在缓解痤疮上表现出极大的潜力。综述了茶叶不同功效成分在抑制皮脂分泌、减轻粉刺发生、改善皮肤微生物失调、减缓皮肤局灶性炎症的作用及分子机制,以期为含茶功效宣称产品的研发提供参考。

关键词:茶;天然产物;缓解;痤疮

中图分类号:S571.1;R275.9               文献标识码:A               文章编号:1000-369X(2024)01-016-11

Research Progress on the Mechanism of Natural Tea Components in Alleviating Acne

WU Zhiyuan, WANG Kaibo, CHEN Silin, ZHAO Bi, SHEN Shiquan*

Institute of Tea, Yunnan Academy of Agricultural Sciences/Yunnan Provincial Key Laboratory of Tea Science, Kunming 650205, China

Abstract: Tea, as a natural beverage, is highly favored due to its clear health benefits. With in-depth research on the active ingredients of tea in recent years, it has been confirmed that natural components can have positive effects on various disease models. Acne is an inflammatory skin disease with a high prevalence and recurrence rate. In addition to traditional clinical diagnosis and treatment, complementary and alternative therapies represented by patches, skin care, and dietary improvement are also popular. In the market, more and more acne control products claim to add tea active ingredients to the raw materials. Natural components such as tea polyphenols, caffeine, theanine and tea saponins have shown great potential in alleviating acne. In this paper, the effects and molecular mechanisms of different functional components of tea on inhibiting sebum secretion, alleviating acne, improving skin microbial imbalance, and alleviating skin focal inflammation were reviewed, in order to provide reference for the research and development of tea natural products.

Keywords: tea, natural products, mitigation, acne

茶作為一种天然饮料,含有丰富的矿物质、糖类、氨基酸、有机酸、类黄酮等天然产物,这些物质被证实具有抗菌、抗炎、抗肿瘤、调节血糖与脂质代谢、降血压、抗焦虑等多种生物活性,具有较高的营养价值和健康益处[1-5]。茶是一种易于获取、成本合适、成分明确、活性显著的天然原料,开发茶功效产品颇具潜力。

 

痤疮俗称青春痘,是一种发生在毛囊皮脂腺的慢性炎症性疾病,主要累及面部、颈部、前胸及肩背部皮肤,其导致的皮损表现多样,一般伴有不同程度的粉刺、脓疱、丘疹、结节[6-7]。痤疮虽不危及生命,但其对颜面部的损害往往给患者造成身心上的双重影响。除常规临床诊疗外,膳食补充、敷贴、皮肤护理等方式被纳入痤疮的补充替代治疗。随着生活水平的提升,人们对自我形象的关注以及对美的追求使得祛痘功效产品的需求量日趋增长。在实践中,茶源天然产物凭借着良好的活性、可靠的安全性成為了功效产品的成分之一,受到市场欢迎[12]。

研究表明,茶的天然产物及其衍生物可有效缓解痤疮的发生(表1)。但由于痤疮的病理生理进程复杂,涉及皮脂分泌、皮肤角化、痤疮角质杆菌(Cutibacterium acnes)紊乱和炎症等多个方面,目前系统性对茶抗痤疮的功效及机制的分析较为少见。因此,通过对茶功效成分在不同时期对痤疮的抑制作用及分子机制进行综述,以期厘清并归纳茶缓解痤疮的原理,为实现茶资源的多元化利用、延长茶产品加工链、提高茶产品综合产值提供思路。

1 茶天然产物抑制皮脂生成

1.1 皮脂生成及分泌异常诱导痤疮的发生

皮脂生成与痤疮的发生高度相关,而皮脂的生物合成受到多条代谢通路调控(图1A)[19]。雄激素是刺激皮脂生成及促进皮脂细胞增殖与分化最主要的因素[20-21]。雄激素与位于细胞核内的雄激素受体结合诱导哺乳动物雷帕霉素靶蛋白(Mammalian target of rapamycin,mTOR)磷酸化,mTORC1激活甾醇调节元件结合蛋白-1(Sterol-regulatory element binding protein-1,SREBP-1)促进脂肪生成[22]。雄激素还能以负反馈方式上调wnt/β-Catenin级联信号通路靶基因c-MYC表达水平,诱导皮脂细胞分化,分化后皮脂细胞其雄激素核受体及过氧化物酶体增殖物激活受体(Peroxisome proliferator-activated receptor,PPARs)水平升高[23]。PPARγ是脂肪生成的主要调节因子,促进脂肪前体细胞分化为成熟脂肪细胞[24]。脂质成分在上述过程中逐渐生成、累积,直至其以全分泌方式将内容物释放到皮脂腺导管中。

胰岛素和胰岛素样生长因子1(Insulin-like

growth factor-1,IGF-1)抑制叉头状转录因子01(Fox01)进而增加脂质的合成[25]。Fox01是痤疮病理生理进程中的重要核转录因子,胰

岛素和IGF-1通过PI3K/Akt途径诱导Fox01核转位,进而对其起到抑制作用[23]。研究表明,Fox01通过拮抗SREBP-1c的表达、抑制雄激素受体活化,以及激活腺苷5′-单磷酸活化蛋白激酶(Adenosine 5'-monophosphate-

activated protein kinase,AMPK)抑制mTORC1表达等3种方式下调脂肪的合成[26]。

除雄激素、胰岛素及IGF-1之外,促肾上腺皮质激素释放素(Corticotropin-releasing hormone,CRH)、α-黑色素细胞刺激素(α-

melanocyte-stimulating hormone,α-MSH)、神经激肽P也能够调控皮脂细胞的分泌活动。CRH经下丘脑-垂体-肾上腺轴诱导类固醇生成并与睾酮和生长激素相互作用参与痤疮的临床发展[27]。研究表明,α-MSH与皮脂细胞分化相关,能够发挥生脂作用[28]。而神经激肽P作为一种与应激性痤疮有关的神经递质,可通过增加PPARγ诱导脂肪生成[23]。

1.2 茶多酚及其衍生物抑制皮脂生成

茶多酚是茶叶中最主要的功效成分,其中表没食子儿茶素没食子酸酯(Epigallocatechin gallate,EGCG)占茶多酚总量的70%~80%[29]。EGCG可通过多种途径调控痤疮病理生理进程,是一种极具潜力的缓解痤疮的茶天然产物[30]。如前所述,IGF-1能够增加皮脂细胞脂质的合成。在体外培养的皮脂细胞SZ95中,EGCG处理可降低IGF-1诱导的p-Akt、p-mTOR表达水平,通过抑制Akt/mTOR信号通路从而降低细胞脂质合成,显著减少油红O染色下的细胞质脂质积累[31]。EGCG还通过激活AMPK进而下调皮脂细胞生成标志物PPARγ、硬脂酰辅酶A去饱和酶(Stearoyl-CoA desaturase,SCD)及SREBP1a和SREBP1c表达起到抑制皮脂分泌的作用[32]。此外,EGCG能够促进凋亡标志物Caspase 3、DNA修复酶PARP的剪切过程,诱导细胞凋亡从而抑制IGF-1刺激下的脂质细胞增殖[31]。

茶黄素是茶多酚的氧化产物之一,具有和茶多酚类似的生物活性。研究表明,茶黄素不仅可抑制兔骨髓干细胞向脂肪细胞的分化,还能够抑制3T3-L1前脂肪细胞向脂肪细胞的分化及增殖,并有效降低细胞内甘油三酯的含量[33]。

1.3 咖啡碱促进皮下脂肪的降解

咖啡碱是茶叶中含量最高的生物碱,约占茶叶干重的2%~4%。除种子外,咖啡碱广泛分布于茶树中。咖啡碱广泛调控人体的诸多生理过程,是一种重要的生物活性物质。Pires-de-Campos等[34]使用含5%咖啡碱凝胶联合超声处理猪皮下组织发现,皮下脂肪厚度显著减少,脂肪细胞数量减少,同时导致脂肪细胞受损,表明咖啡碱可有效减少皮下脂肪堆积。Velasco等[14]研究发现,连续21 d在雌性Wistar小鼠背部涂抹含有咖啡碱的乳液,可使脂肪细胞直径减小17%。咖啡碱通过一系列级联反应激活激素敏感脂肪酶(Hormone-sensitive

lipase,HSL)促进胞内脂肪降解,可激活肾上腺素受体,提升体内环磷酸腺苷(Cyclic adenosine monophosphate,cAMP)表达水平。cAMP是生物体内关键的第二信使,通过激活蛋白激酶A磷酸化HSL,促进皮下脂肪的分解代谢[35]。

2 茶天然产物改善皮肤过度角化减轻粉刺生成

2.1 痤疮发展中的皮脂腺角化过度与粉刺形成

角质化异常是痤疮发病的重要因素(图1B)。痤疮发生后,过度增殖性蛋白(K6、K16和K17)表达增加[36]。研究表明,基底层丝状蛋白高表达与异常角化显著相关,丝聚蛋白表达的上调提升整合素α3/6s/vβ6(Integrin-α3/

6s/vβ6)水平,从而影响角质形成细胞的增殖、分化以及粉刺的形成[37]。此外,经脂肪酶分解产生游离的脂肪酸在皮脂腺滤泡处发生堆积,阻碍角质细胞的正常排出,导致过度角化的发生[38]。

毛囊皮脂腺增生、角质细胞积聚和导管角质形成细胞过度增殖引起痤疮早期的皮损,即微粉刺[39]。随着痤疮的不断发展,微粉刺可发展为闭合性粉刺或开放性粉刺,并进一步形成炎性丘疹、脓疱,直至结节或囊肿[40]。对微粉刺的形态学研究指出,微粉刺外周由角质层组成,内部则为脂质和微生物群落。微生物群落包含痤疮角质杆菌、葡萄球菌、马拉色菌等,这些微生物和微粉刺对毛囊皮脂腺的堵塞会招募免疫细胞富集,诱发炎症[37]。

2.2 茶多酚抑制皮脂腺角化减轻痤疮

白细胞介素-1(IL-1)能够诱导皮肤的过度角化,而EGCG可通过降低HaCat角质形成细胞中的IL-1水平抑制漏斗部的过度角化。动物试验表明,使用2% EGCG处理兔耳廓模型能够有效降低皮脂腺和粉刺大小,同时每个腺体皮脂细胞的平均数量减少;形态学证据证实,EGCG能够显著减小由痤疮角质杆菌诱导产生结节直径及厚度[32]。

3 茶天然产物改善痤疮皮肤微生物失调

3.1 痤疮角质杆菌在痤疮病理进程中的作用

痤疮角质杆菌是一种厌氧革兰氏阳性细菌,作为最常见的人体皮肤共生菌,其分布于人体皮肤中富含皮脂毛囊腺的区域,约占该区域微生物群落的90%[39]。痤疮角质杆菌根据其基因组序列差异可分为6种主要亚型:IA1,IA2,IB,IC,Ⅱ和Ⅲ。痤疮的发展与痤疮角质杆菌多样性的失调有关[41]。健康皮肤中痤疮角质杆菌最丰富的亚型为IA1,约占40%;但在痤疮皮肤中,IA1可增加至总量的70%以上,IA2也有明显增加,而亚型IB和Ⅱ则显著下降[39]。定植在皮肤上的痤疮角质杆菌多样性随痤疮发生改变,表明不同亚型的菌株在痤疮的病理生理进程中发挥不同作用(图1C)。

痤疮角质杆菌可分泌脂肪酶、蛋白酶、透明质酸裂解酶、内切糖酰胺酶、神经氨酸酶等致病因子[42]。脂肪酶可将皮脂中的甘油三酯水解为游离脂肪酸,具有促炎和促角化作用[43]。蛋白酶、内切糖酰胺酶、神经氨酸酶和透明质酸裂解酶通过降解细胞外基质的重要成分以协助痤疮角质杆菌入侵[44]。细胞外基质发生降解后,炎性免疫细胞浸润,并促进毛囊周围炎症[23]。

除此之外,痤疮角质杆菌IA1和IA2两个亚型还表现出极高的细菌生物膜形成能力[45]。细菌生物膜是痤疮角质杆菌在生长过程中相互粘和形成一层附着在皮肤表面的膜结构,能够产生促进粘附及其基质形成的胞外聚合物和糖被[39]。胞外聚合物不仅能够调节微生物的生长代谢并诱导宿主细胞炎症的发生,还能够与抗生素发生化学反应或者降低抗生素运输速率[46]。这使得抗菌剂的摄入减少,灭活效果也随之降低,痤疮角质杆菌由此获得耐药性[23]。而糖被则形成一层屏障,保护痤疮角质杆菌及其他细菌能够在不利环境中生存。

3.2 茶多酚抑制微生物生长及其生物膜形成

EGCG已被证实对多种微生物增殖有抑制作用,可以靶向痤疮发展过程中痤疮丙酸杆菌的异常定植[32,47]。

EGCG可通过多种方式直接抑制细菌生长。EGCG通过与跨膜的通道蛋白相互作用抑制体外培养的大肠杆菌对葡萄糖的摄取[48]。硫氧还蛋白和硫氧还蛋白还原酶是细菌DNA合成和抵御氧化应激的关键,EGCG可抑制金黄色葡萄球菌及大肠杆菌中的硫氧还蛋白和硫氧还蛋白还原酶,进而起到对细菌生长的抑制作用[48]。此外,EGCG还能够破坏细胞膜结构完整性,通过与细胞膜脂双层发生互作,在细胞膜表面形成小的穿孔,诱导细胞膜损伤[49]。综上所述,EGCG通过与表面蛋白相互作用破坏细胞膜、分解必需代谢物、抑制相关酶、诱导ROS应激、改变细胞壁结构、分离细胞质等方式发挥抑菌作用。

除直接杀菌作用外,茶多酚还能通過抑制细菌生物膜形成的方式发挥抑菌作用。茶多酚对细菌生物膜生成的抑制大致可归纳为如下3种途径:(1)抑制细菌生物膜基质淀粉样蛋白合成。淀粉样蛋白存在于大多数天然生物膜中,多肽以β-折叠的方式最终组装为蛋白纤维,形成生物膜的结构基础。大量报道指出,在多种疾病模型中EGCG均能抑制体外淀粉样蛋白的合成[50]。(2)干扰微生物胞间通信系统。生物膜的形成涉及细菌细胞间通讯,其通过产生胞外化学信号分子(Autoinducers,AI)来调节,AI的浓度随细菌种群密度的增加而增加[51-52]。EGCG依靠AI-1/LuxR通路调节胞间通讯系统,通过与淀粉样蛋白重构,破坏细胞间通信系统,进而抑制细胞外基质的产生[53-54]。(3)调控第二信使环二鸟苷单磷酸酯(Cyclic diguanosine monophosphate,c-di-GMP)。高水平的c-di-GMP能够刺激产生各种黏附素和生物膜相关胞外多糖的表达,EGCG可依赖二鸟苷酸环化酶调控c-di-GMP,进而抑制细菌生物膜生成[55]。

3.3 茶皂苷提升细菌细胞膜通透性激活溶菌酶

茶皂苷属于齐敦果烷型五环三萜类皂苷,由亲水糖基、有机酸和疏水苷元配基3部分组成,具有抑菌、抗炎、抗氧化等生物活性[56]。皂苷具有类似洗涤剂的特性,能够增加细菌细胞膜的渗透性,促进抗生素通过细菌细胞膜流入。茶皂苷一方面可裂解体外培养的细菌细胞,使培养物中碱性磷酸酶及可溶性蛋白含量升高,对细菌细胞壁及细胞组分造成损害,表现出极强的抗菌活性[57];另一方面,绿茶籽提取的皂苷可不同程度提升体内溶菌酶活性,增强免疫功能[58]。

4 茶天然产物抑制皮肤局灶性炎症

4.1 炎症伴随痤疮的发展

炎症始终贯穿痤疮的病理生理进程(图1D),痤疮角质杆菌和IGF-1是痤疮炎症反应中最重要的诱因[59]。在痤疮发生早期,患处血管细胞黏附分子、E-选择素、整合素的表达水平升高,淋巴细胞开始浸润在毛囊周围,微粉刺中可观察到巨噬细胞和辅助性T细胞[36]。痤疮角质杆菌能够激活角质形成细胞上的Toll样受体(Toll-like receptor,TLR)TLR-2、TLR-4,并通过转录因子NF-κB和丝裂原活化蛋白激酶(Mitogen-activated protein kinase,MAPK)途径促进IL-1、IL-6、IL-8、粒细胞-巨噬细胞集落刺激因子、肿瘤坏死因子α(tumor necrosis factor-α,TNF-α)、基质金属蛋白酶(Matrix metalloproteinases,MMPs)和干扰素-γ的分泌以形成如丘疹、脓疱等炎症性皮损[36]。由表皮细胞产生的血管内皮生长因子(Vascular endothelial growth factor,VEGF)是参与炎症过程的重要细胞因子,其通过对炎症细胞的活性趋化和异常血管生成作用诱发皮肤炎症。此外,角质形成细胞CD36受体在痤疮角质杆菌刺激后,能迅速产生以超氧阴离子自由基为代表的活性氧,加强炎症反应。

另有研究表明,皮脂细胞在IGF-1刺激下NF-κB、IL-1、IL-6β、IL-8和TNF-α的表达增加[23]。IGF-1还能刺激皮脂细胞分泌细胞因子和MMPs,并进一步募集炎症细胞到毛囊皮脂腺单位。MMPs能使脂肪酸溢出至真皮层,溶解细胞外基质中的胶原蛋白等生物大分子,进一步诱导炎症的发生[60]。

4.2 茶多酚的多靶点抗炎作用

茶多酚已被证实在包括痤疮在内的多种疾病模型中拥有良好的抗炎作用,其在皮肤中的抗炎机制总结如下:(1)靶向细胞表面受体的抗炎作用。EGCG能够显著抑制由痤疮角质杆菌激活的Toll样受体TLR-4和血管内皮生长因子受体,阻止炎症信号的逐级传递从而起到抗炎作用[61]。(2)靶向第二信使的抗炎作用。EGCG既可通过抑制AMPK及环氧化酶途径抑制由痤疮角质杆菌诱导的炎症,又可抑制MAPK进而下调体内活性氧水平以产生抗炎作用[62-63]。(3)靶向转录因子和转录激活因子的抗炎作用。EGCG通过抑制NF-κB和AP-1降低MMPs的体内水平,阻止炎症的进展[61]。(4)靶向白介素的抗炎作用。EGCG能够通过拮抗IGF-1的方式抑制皮脂细胞炎症标志物IL-1α、IL-1β、IL-6和IL-8,缓解皮肤炎症[32]。(5)靶向巨噬细胞的抗炎作用。巨噬细胞分为促炎作用的M1表型和抗炎作用的M2表型[64-65],M2表型除抗炎作用外,还能促进胶原蛋白的合成,促进皮肤伤口恢复[66]。EGCG可诱导巨噬细胞由M1型极化为M2型,发挥保护皮肤的作用[67]。

4.3 茶氨酸抑制免疫细胞浸润

L-茶氨酸是一种主要存在于茶树中的水溶性非蛋白质氨基酸,具有丰富的保健功效。Xu等[68]的研究发现,L-茶氨酸能够通过抑制NF-κB位点、减少IL-23合成,从而抑制咪喹莫特诱导的皮肤炎症。组织学和病理学研究证实,L-茶氨酸可有效避免炎症部位免疫细胞浸润,降低炎症因子IL-1β,TNF-α和COX-2的表达水平,进一步阻止炎症所致血管通透性增加及水肿的发生[69-70]。

4.4 咖啡碱的抗炎作用

咖啡碱不仅能促进皮下脂肪降解,还具有抗炎的生物活性。信号转导及转录激活因子(Signal transducer and activator of transcription,STAT)深入参与机体的炎症调控,在多种炎症性疾病中均能观察到STAT3表达的升高,研究表明咖啡碱可显著降低STAT3的表达水平[71-72]。此外,咖啡碱还可通过调控MAPK/NF-κB信号通路抑制巨噬细胞炎症小体NLRP1和IL-1β、IL-2、IL-8的表

达,进而起到抗炎作用[73]。

5 总结与展望

EGCG作为一种高活性的茶叶功效成分,对痤疮的抑制作用贯穿其发展的全过程:(1)通干预Akt/mTOR、AMPK信号通路抑制脂质的合成与分泌,并以诱导细胞凋亡的方式抑制脂质细胞的增殖。(2)抑制角质形成细胞的过度角化,缓解皮肤粉刺发生。(3)抑制痤疮角质杆菌及其他皮肤常见菌的增殖,有效破坏细菌生物膜的形成。(4)缓解皮肤炎症,促进伤口愈合;咖啡碱不仅可有效减少皮下脂肪细胞数量、促进皮下脂肪的分解,还可通过抑制MAPK/NF-κB等通路发挥抗炎作用;茶皂苷通过破坏细菌细胞结构,同时增强溶菌酶活性发挥其抑菌作用;L-茶氨酸能够减少白介素合成,减轻免疫细胞浸润,缓解皮肤炎症。综上所述,茶的功效成分通过抑制皮脂的生成与分泌、调节皮肤共生微生物稳态、防止皮肤异常角化、减轻皮肤炎症的方式调节痤疮的病理生理进程(图2),是祛痘的产品研发过程中值得关注的成分[29,61,74]。

前期研究发现,茯砖茶通过调控核激素受体NHR和SREBP表达抑制脂肪储存并促进脂质分解,而茶水提物能够有效降低线虫模型

中脂質水平,这些结果提示发酵茶中的特有成分亦有可能减缓痤疮的发展[75-76]。因此,在茶活性成分的挖掘中可进一步考虑茶树品种和加工工艺的差异,以便寻找更为有效的活性成分。

在实践中,使用茶提取物作为活性成分添加至“抗痤疮”为功效宣称的精深加工产品时,必须考虑茶提取物中各组分是否存在拮抗或协同效应。例如,咖啡碱能够促进皮下脂肪的分解,但外用时必须考虑其会促进皮肤异常角化及炎症的发生。基于此,在后续的研究中,可进一步关注功效成分复配在抑制痤疮发展时的作用,深入解析其互作原理与分子机制,筛选出更为安全、有效、适当的天然产物配伍。

茶天然產物的提取及其应用机制探索与茶保健品、茶日化品、茶美妆品的开发是提高茶产品多元化和高值化利用的有效途径,可化解目前茶产业加工链较短、茶产品同质化严重的矛盾,助力茶产业转型升级。学界可在相关方面加强跨领域、跨学科的交流与合作,深入挖掘茶天然产物在抗痤疮、抗光老化、抗黑色素沉淀、抑制龋齿发生等方面的作用机制,为功能产品研发提供切实的科学基础。

参考文献

[1]Ahammed G J, Li X. Hormonal regulation of health-promoting compounds in tea (Camellia sinensis L.) [J]. Plant Physiology and Biochemistry, 2022, 185: 390-400.

[2]Rha C S, Jeong H W, Park S, et al. Antioxidative, anti-inflammatory, and anticancer effects of purified flavonol glycosides and aglycones in green tea [J]. Antioxidants, 2019, 8(8): 278. doi: 10.3390/antiox8080278.

[3]Liao Z L, Zeng B H, Wang W, et al. Impact of the consumption of tea polyphenols on early atherosclerotic lesion formation and intestinal Bifidobacteria in high-fat-fed apoe-/-mice [J]. Frontiers in Nutrition, 2016, 3: 42. doi: 10.3389/fnut.2016.00042.

[4]Guo J, Li K, Lin Y J, et al. Protective effects and molecular mechanisms of tea polyphenols on cardiovascular diseases [J]. Frontiers in Nutrition, 2023, 10: 1202378. doi: 10.3389/fnut.2023.1202378.

[5]Zhao T T, Li C, Wang S, et al. Green tea (Camellia sinensis): a review of its phytochemistry, pharmacology, and toxicology [J]. Molecules, 2022, 27(12): 3909. doi: 10.3390/molecules27123909.

[6]Woo Y R, Kim H S. Truncal acne: an overview [J]. Journal of Clinical Medicine, 2022, 11(13): 3660. doi: 10.3390/jcm11133660.

[7]Kim S, Park T H, Kim W I, et al. The effects of green tea on acne vulgaris: a systematic review and meta-analysis of randomized clinical trials [J]. Phytotherapy Research, 2021, 35(1): 374-383.

[8]Kalaaji A N, Wahner-Roedler D L, Sood A, et al. Use of complementary and alternative medicine by patients seen at the dermatology department of a tertiary care center [J]. Complementary Therapies in Clinical Practice, 2012, 18(1): 49-53.

[9]Roengritthidet K, Kamanamool N, Udompataikul M, et al. Association between diet and acne severity: a cross-sectional study in Thai adolescents and adults [J]. Acta Dermato-Venereologica, 2021, 101(12): adv00611. doi: 10.2340/actadv.v101.569.

[10]Jones V A, Patel P M, Wilson C, et al. Complementary and alternative medicine treatments for common skin diseases: a systematic review and meta-analysis [J]. JAAD International, 2021, 2: 76-93.

[11]Meixiong J, Ricco C, Vasavda C, et al. Diet and acne: a systematic review [J]. JAAD International, 2022, 7: 95-112.

[12]Messire G, Serreau R, Berteina-Raboin S. Antioxidant effects of catechins (EGCG), andrographolide, and curcuminoids compounds for skin protection, cosmetics, and dermatological uses: an update [J]. Antioxidants, 2023, 12(7): 1317. doi: 10.3390/antiox12071317.

[13]姜秋香. 茶多酚的祛痘护肤功效及对皮肤菌群的作用研究[D]. 昆明: 云南中医药大学, 2023.

Jiang Q X. Study on the effect of tea polyphenols on acne and skin care and the effect on skin flora [D]. Kunming: Yunnan University of Chinese Medicine, 2023.

[14]Velasco M V R, Tano C T N, Machado-Santelli G M, et al. Effects of caffeine and siloxanetriol alginate caffeine, as anticellulite agents, on fatty tissue: histological evaluation [J]. Journal of Cosmetic Dermatology, 2008, 7(1): 23-29.

[15]大連市皮肤病医院. 茶多酚抗痤疮外用制剂: CN201010010139.6[P]. 2021-05-30[2023-09-12].

Dalian Dermatosis Hospital. Tea polyphenols anti-acne topical preparation: CN201010010139.6 [P]. 2021-05-30[2023-09-12].

[16]株式会社爱茉莉太平洋. 茶氨酸衍生物及其制备方法和在减轻痤疮中的应用: CN201180038302.2[P]. 2014-12-31[2023-09-12].

Amore Pacific Corporation. Tea amino acid derivatives and their preparation methods and applications in the alleviation of acne: CN201180038302.2 [P]. 2014-12-31[2023-09-12].

[17]Waranuch N, Phimnuan P, Yakaew S, et al. Antiacne and antiblotch activities of a formulated combination of Aloe barbadensis leaf powder, Garcinia mangostana peel extract, and Camellia sinensis leaf extract [J]. Clinical, Cosmetic and Investigational Dermatology, 2019, 12: 383-391.

[18]刘俐, 隋丽华, 韩国柱, 等. 茶多酚乳膏治疗重症痤疮的临床疗效观察[J]. 中草药, 2009, 40(9): 1448-1449.

Liu L, Sui L H, Han G Z, et al. Clinical observation of the therapeutic effect of tea polyphenols cream in the treatment of severe acne [J]. Chinese Traditional and Herbal Drugs, 2009, 40(9): 1448-1449.

[19]Cao K, Liu Y, Liang N N, et al. Fatty acid profiling in facial sebum and erythrocytes from adult patients with moderate acne [J]. Frontiers in Physiology, 2022, 13: 921866. doi: 10.3389/fphys.2022.921866.

[20]Bhat Y J, Latief I, Hassan I. Update on etiopathogenesis and treatment of acne [J]. Indian Journal of Dermatology, Venereology and Leprology, 2017, 83(3): 298-306.

[21]Wu S H, Zhang X, Wang Y, et al. Lipid metabolism reprogramming of immune cells in acne: an update [J]. Clinical, Cosmetic and Investigational Dermatology, 2023, 16: 2391-2398.

[22]Agamia N F, Abdallah D M, Sorour O, et al. Skin expression of mammalian target of rapamycin and forkhead box transcription factor O1, and serum insulin-like growth factor-1 in patients with acne vulgaris and their relationship with diet [J]. The British Journal of Dermatology, 2016, 174(6): 1299-1307.

[23]Cong T X, Hao D, Wen X, et al. From pathogenesis of acne vulgaris to anti-acne agents [J]. Archives of Dermatological Research, 2019, 311(5): 337-349.

[24]Moseti D, Regassa A, Kim W K. Molecular regulation of adipogenesis and potential anti-adipogenic bioactive molecules [J]. International Journal of Molecular Sciences, 2016, 17(1): 124. doi: 10.3390/ijms17010124.

[25]Maarouf M, Platto J F, Shi V Y. The role of nutrition in inflammatory pilosebaceous disorders: Implication of the skin-gut axis [J]. Australasian Journal of Dermatology, 2019, 60(2): e90-e98.

[26]Melnik B C. Linking diet to acne metabolomics, inflammation, and comedogenesis: an update [J]. Clinical, Cosmetic and Investigational Dermatology, 2015, 8: 371-388.

[27]Ganceviciene R, Graziene V, Fimmel S, et al. Involvement of the corticotropin-releasing hormone system in the pathogenesis of acne vulgaris [J]. The British Journal of Dermatology, 2009, 160(2): 345-352.

[28]Ganceviciene R, Graziene V, B?hm M, et al. Increased in situ expression of melanocortin-1 receptor in sebaceous glands of lesional skin of patients with acne vulgaris [J]. Experimental Dermatology, 2007, 16(7): 547-552.

[29]Musial C, Kuban-Jankowska A, Gorska-Ponikowska M. Beneficial properties of green tea catechins [J]. International Journal of Molecular Sciences, 2020, 21(5): 1744. doi: 10.3390/ijms21051744.

[30]廖培羽, 施歌. 表沒食子儿茶素没食子酸酯(EGCG)治疗痤疮的作用机制研究进展[J]. 中国美容医学, 2016, 25(8): 104-106.

Liao P Y, Shi G. Research progress on the mechanism of epigallocatechin gallate (EGCG) in the treatments of acne [J]. Chinese Journal of Aesthetic Medicine, 2016, 25(8): 104-106.

[31]Im M, Kim S Y, Sohn K C, et al. Epigallocatechin-3-gallate suppresses IGF-I-induced lipogenesis and cytokine expression in SZ95 sebocytes [J]. Journal of Investigative Dermatology, 2012, 132(12): 2700-2708.

[32]Kwack M H, Ha D L, Lee W J. Preventative effects of antioxidants on changes in sebocytes, outer root sheath cells, and Cutibacterium acnes-pretreated mice by particulate matter: No significant difference among antioxidants [J]. International Journal of Immunopathology and Pharmacology, 2022, 36: 39463202211124. doi: 10.1177/03946320221112433.

[33]Rothenberg D O, Zhou C, Zhang L. A review on the weight-loss effects of oxidized tea polyphenols [J]. Molecules, 2018, 23(5): 1176. doi: 10.3390/molecules23051176.

[34]Pires-de-Campos M S M, Leonardi G R, Chorilli M, et al. The effect of topical caffeine on the morphology of swine hypodermis as measured by ultrasound [J]. Journal of Cosmetic Dermatology, 2008, 7(3): 232-237.

[35]Herman A, Herman A P. Caffeines mechanisms of action and its cosmetic use [J]. Skin Pharmacology and Physiology, 2013, 26(1): 8-14.

[36]Kurokawa I, Layton A M, Ogawa R. Updated treatment for acne: targeted therapy based on pathogenesis [J]. Dermatology and Therapy, 2021, 11(4): 1129-1139.

[37]Xu H X, Li H Y. Acne, the skin microbiome, and antibiotic treatment [J]. American Journal of Clinical Dermatology, 2019, 20(3): 335-344.

[38]Shamloul G, Khachemoune A. An updated review of the sebaceous gland and its role in health and diseases Part 2: pathophysiological clinical disorders of sebaceous glands [J]. Dermatologic Therapy, 2021, 34(2): e14862. doi: 10.1111/dth.14862.

[39]Mias C, Mengeaud V, Bessou-Touya S, et al. Recent advances in understanding inflammatory acne: deciphering the relationship between Cutibacterium acnes and Th17 inflammatory pathway [J]. Journal of the European Academy of Dermatology and Venereology, 2023, 37(s2): 3-11.

[40]Xu X X, Ran X, Tang J Q, et al. Skin microbiota in non-inflammatory and inflammatory lesions of acne vulgaris: the underlying changes within the pilosebaceous unit [J]. Mycopathologia, 2021, 186(6): 863-869.

[41]Dagnelie M A, Corvec S, Saint-Jean M, et al. Cutibacterium acnes phylotypes diversity loss: a trigger for skin inflammatory process [J]. Journal of the European Academy of Dermatology and Venereology, 2019, 33(12): 2340-2348.

[42]Kistowska M, Meier B, Proust T, et al. Propionibacterium acnes promotes Th17 and Th17/Th1 responses in acne patients [J]. The Journal of Investigative Dermatology, 2015, 135(1): 110-118.

[43]Omer H, McDowell A, Alexeyev O A. Understanding the role of Propionibacterium acnes in acne vulgaris: the critical importance of skin sampling methodologies [J]. Clinics in Dermatology, 2017, 35(2): 118-129.

[44]Kwon K C, Won J G, Kim M S, et al. Anti-acne activity of carnitine salicylate and magnolol through the regulation of exfoliation, lipogenesis, bacterial growth and inflammation [J]. Skin Research and Technology, 2023, 29(7): e13406. doi: 10.1111/srt.13406.

[45]Kuehnast T, Cakar F, Weinh?upl T, et al. Comparative analyses of biofilm formation among different Cutibacterium acnes isolates [J]. International Journal of Medical Microbiology, 2018, 308(8): 1027-1035.

[46]Acet ?, Dikici E, Acet B ?, et al. Inhibition of bacterial adhesion by epigallocatechin gallate attached polymeric membranes [J]. Colloids and Surfaces B: Biointerfaces, 2023, 221: 113024. doi: 10.1016/j.colsurfb.2022.113024.

[47]Yoon J Y, Kwon H H, Min S U, et al. Epigallocatechin-3-gallate improves acne in humans by modulating intracellular molecular targets and inhibiting P. acnes [J]. Journal of Investigative Dermatology, 2013, 133(2): 429-440.

[48]Xu F W, Lv Y L, Zhong Y F, et al. Beneficial effects of green tea EGCG on skin wound healing: a comprehensive review [J]. Molecules, 2021, 26(20): 6123. doi: 10.3390/molecules26206123.

[49]Hengge R. Targeting bacterial biofilms by the green tea polyphenol EGCG [J]. Molecules, 2019, 24(13): 2403. doi: 10.3390/molecules24132403.

[50]Shinde S, Lee L H, Chu T. Inhibition of biofilm formation by the synergistic action of EGCG-S and antibiotics [J]. Antibiotics, 2021, 10(2): 102. doi: 10.3390/antibiotics10020102.

[51]Lima E M F, Winans S C, Pinto U M. Quorum sensing interference by phenolic compounds: a matter of bacterial misunderstanding [J]. Heliyon, 2023, 9(7): e17657. doi: 10.1016/j.heliyon.2023.e17657.

[52]Wang Y S, Bian Z R, Wang Y. Biofilm formation and inhibition mediated by bacterial quorum sensing [J]. Applied Microbiology and Biotechnology, 2022, 106(19/20): 6365-6381.

[53]Zhu J L, Huang X Z, Zhang F, et al. Inhibition of quorum sensing, biofilm, and spoilage potential in Shewanella baltica by green tea polyphenols [J]. Journal of Microbiology, 2015, 53(12): 829-836.

[54]Hao S Q, Yang D, Zhao L, et al. EGCG-mediated potential inhibition of biofilm development and quorum sensing in Pseudomonas aeruginosa [J]. International Journal of Molecular Sciences, 2021, 22(9): 4946. doi: 10.3390/ijms22094946.

[55]Zheng T, Cui M, Chen H, et al. Co-assembled nanocomplexes comprising epigallocatechin gallate and berberine for enhanced antibacterial activity against multidrug resistant Staphylococcus aureus [J]. Biomedicine & Pharmacotherapy, 2023, 163: 114856. doi: 10.1016/j.biopha.2023.114856.

[56]Chen Y, Gao Y, Yuan M, et al. Anti-Candida albicans effects and mechanisms of theasaponin E1 and assamsaponin A [J]. International Journal of Molecular Sciences, 2023, 24(11): 9350. doi: 10.3390/ijms24119350.

[57]Choudhary M, Verma V, Saran R, et al. Natural biosurfactant as antimicrobial agent: strategy to action against fungal and bacterial activities [J]. Cell Biochemistry and Biophysics, 2022, 80(1): 245-259.

[58]Khan M I, Ahhmed A, Shin J H, et al. Green tea seed isolated saponins exerts antibacterial effects against various strains of gram positive and gram negative bacteria, a comprehensive study in vitro and in vivo [J]. Evidence-Based Complementary and Alternative Medicine, 2018, 2018: 3486106. doi: 10.1155/2018/3486106.

[59]Albalat W, Darwish H, Abd-Elaal W H, et al. The potential role of insulin-like growth factor 1 in acne vulgaris and its correlation with the clinical response before and after treatment with metformin [J]. Journal of Cosmetic Dermatology, 2022, 21(11): 6209-6214.

[60]Mattii M, Lovászi M, Garzorz N, et al. Sebocytes contribute to skin inflammation by promoting the differentiation of T helper 17 cells [J]. The British Journal of Dermatology, 2018, 178(3): 722-730.

[61]Mokra D, Joskova M, Mokry J. Therapeutic effects of green tea polyphenol (-)-epigallocatechin-3-gallate (EGCG) in relation to molecular pathways controlling inflammation, oxidative stress, and apoptosis [J]. International Journal of Molecular Sciences, 2022, 24(1): 340. doi: 10.3390/ijms24010340.

[62]He Y, Yang Z J, Pi J W, et al. EGCG attenuates the neurotoxicity of methylglyoxal via regulating MAPK and the downstream signaling pathways and inhibiting advanced glycation end products formation [J]. Food Chemistry, 2022, 384: 132358. doi: 10.1016/j.foodchem.2022.132358.

[63]Wu Y Y, Cui J. (-)-Epigallocatechin-3-gallate provides neuroprotection via AMPK activation against traumatic brain injury in a mouse model [J]. Naunyn-Schmiedebergs Archives of Pharmacology, 2020, 393(11): 2209-2220. doi: 10.1007/s00210-020-01841-1.

[64]?aloudíková M. Mechanisms and effects of macrophage polarization and its specifics in pulmonary environment [J]. Physiological Research, 2023, 72(s2): S137-S156.

[65]Vassiliou E, Farias-Pereira R. Impact of lipid metabolism on macrophage polarization: implications for inflammation and tumor immunity [J]. International Journal of Molecular Sciences, 2023, 24(15): 12032. doi: 10.3390/ijms241512032.

[66]Ye J, Li Q H, Zhang Y S, et al. ROS scavenging and immunoregulative EGCG@Cerium complex loaded in antibacterial polyethylene glycol-chitosan hydrogel dressing for skin wound healing [J]. Acta Biomaterialia, 2023, 166: 155-166.

[67]Han M G, Wang X, Wang J, et al. Ameliorative effects of epigallocatechin-3-gallate nanoparticles on 2,4-dinitrochlorobenzene induced atopic dermatitis: a potential mechanism of inflammation-related necroptosis [J]. Frontiers in Nutrition, 2022, 9: 953646. doi: 10.3389/fnut.2022.953646.

[68]Xu Y H, Zhu J, Hu J Y, et al. L-theanine alleviates IMQ-induced psoriasis like skin inflammation by downregulating the production of IL-23 and chemokines[J]. Frontiers in Pharmacology, 2021, 12: 719842. doi: 10.3389/fphar.2021.719842.

[69]Zeng W J, Tan Z, Lai X F, et al. Topical delivery of L-theanine ameliorates TPA-induced acute skin inflammation via downregulating endothelial PECAM-1 and neutrophil infiltration and activation [J]. Chemico-Biological Interactions, 2018, 284: 69-79.

[70]Liu K H, Liu E S, Lin L, et al. L-theanine mediates the p38MAPK signaling pathway to alleviate heat-induced oxidative stress and inflammation in mice [J]. Food & Function, 2022, 13(4): 2120-2130.

[71]Li Z D, Geng M Y, Dou S R, et al. Caffeine decreases hepcidin expression to alleviate aberrant iron metabolism under inflammation by regulating the IL-6/STAT3 pathway [J]. Life, 2022, 12(7): 1025. doi: 10.3390/life12071025.

[72]Zhou J, Bian H Y, Wu N. Protein inhibitor of activated STAT3 (PIAS3) attenuates psoriasis and associated inflammation [J]. The Journal of Dermatology, 2023, 50(10): 1262-1271.

[73]Vargas-Pozada E E, Ramos-Tovar E, Rodriguez-Callejas J D, et al. Caffeine inhibits NLRP3 inflammasome activation by downregulating TLR4/MAPK/NF-κB signaling pathway in an experimental NASH model [J]. International Journal of Molecular Sciences, 2022, 23(17): 9954. doi: 10.3390/ijms23179954.

[74]Alagawany M, Abd El-Hack M E, Saeed M, et al. Nutritional applications and beneficial health applications of green tea and L-theanine in some animal species: a review [J]. Journal of Animal Physiology and Animal Nutrition, 2020, 104(1): 245-256.

[75]Pan L Y, Lu Y, Dai S, et al. The role of cholesterol in modifying the lipid-lowering effects of Fuzhuan brick-tea in Caenorhabditis elegans via SBP-1/SREBP [J]. Food Science and Human Wellness, 2023, 12(6): 2297-2305.

[76]Lee Y R, Moon G H, Shim D, et al. Neuroprotective effects of fermented tea in MPTP-induced Parkinsons disease mouse model via MAPK signaling-mediated regulation of inflammation and antioxidant activity [J]. Food Research International, 2023, 164: 112133. doi: 10.1016/j.foodres. 2022.

112133.


责任编辑:天下口碑

---国土名片网版权所有---